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applied by both himself and others (like Stuart [ll]) to 
A more elaborate discrete multiple scales analysis than that used by various nonlinear partial difference equations. It does not, 

Newell in 1977 is performed on the Zabusky-Kruskal discretization of however, give a clear picture of the relationships between 
the Kortewegde Vries ( KdV) equation. This eventually leads to a set of 
partial difference equations describing the modulational behavior of a 

partial differences with respect to the various time and space 

small harmonic wave modulated by a slowly varying envelope. In the 
scales. We therefore devised OUT own method of analysis, 

case of certain modes of the carrier wave, the multiple scales analysis which is quite analogous to the analysis for differential 
breaks down, indicating that in these cases the numerical solution equations. For this purpose we derived a special difference 
deviates in behavior from that of the KdV equation. Numerical identity which serves the same purpose as the chain rule for 
experiments are reported which confirm this. 0 1992 Academic Press. Inc. derivatives. 

1. INTRODUCTION 

Recently Maritz and Schoombie [IS] reported the 
occurrence of small amplitude, saw toothed wave packets 
when using the Zabusky-Kruskal finite difference scheme 
[15] to solve the Korteweg-de Vries (KdV) equation 
with rectangular pulse initial data. They also showed that 
a similar scheme for the modified Korteweg-de Vries 
(MKdV) equation admits saw toothed solitary wave 
packets with near soliton behavior. Sloan [lo] also con- 
sidered the Zabusky-Kruskal scheme for the KdV, showing 
that the presence of the dispersive term causes modulational 
instabilities. 

In this paper we continue this study of the Zabusky- 
Kruskal scheme for the KdV equation. We now focus our 
attention on the modulation properties of this finite 
difference scheme when the initial datum consists of a small 
amplitude harmonic wave with long, slow modulations. 

Our method of analysis is a discrete version of the weil- 
known multiple scales technique [7, 141. This technique 
has often been used to establish a modulation theory for 
certain nonlinear dispersive wave equations in the case of 
slow, weak modulations [3-51. In the case of the KdV 
equation, such an analysis shows that the envelopes of the 
modulated waves are governed by the nonlinear Schrijdinger 
equation [ 11. 

As far as we know, the only multiple scales analysis for 
partial difference equations reported in the literature is that 
of Newell [S]. Newell’s analysis has been successfully 

The end result of our multiple scales analysis is a system 
of difference equations for the wave envelope. One of these 
is consistent with the nonlinear Schradinger equation for a 
low wave number carrier wave. 

Obviously these modulation equations can be valuable in 
studies of modulational instabilities and spurious solutions 
of the difference scheme. In this paper we report only one 
type of spurious solution which occurs for certain choices of 
the parameters in the KdV equation and for specific wave 
numbers of the carrier wave. 

In Section 2 a brief review is given of the modulational 
theory of the continuous equation, as derived in [ 1, 16, 123. 
We point out that the method used by Zakharov and 
Kuznetsov [16] and Tracy et al. [12] is particularly 
suited for adaptation to the discrete case. In Section 3 we 
obtain the discrete analogs of these equations for the 
Zabusky-Kruskal scheme. Section 4 contains a discussion 
of the modulations of a saw toothed wave, and in Section 5 
a few numerical results are reported. In Section 6, we give 
our conclusions and point out a few other possibilities. 

2. ANALYSIS OF THE KDV EQUATION 

For purposes of comparison we shall give a review of 
known results concerning long slow modulations of small 
monochromatic harmonic waves of which the evolution is 
governed by the KdV equation. Full details may be found in 
[l, 16, 121. 

Consider the KdV equation in the form 
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where the subscripts denote partial differentiation as usual where L is the linear operator, 
and where q, [, and y are constants, with y # 0. It is further- 
more assumed that suitable initial data a a a3 

4% 0) = cm), f(x) = Wl)> (2) 
L:=ar,+flax,+y*. (12) 

are prescribed, as well as the periodic conditions 
We now consider a solution of (9) of the form 

u(x * L, t) = u(x, t), u(l) = A(X,, T, , TJ exp(i0) + complex conjugate, (13) 

f-(x * L) = f(X), t > 0, XER, 
(3) 

where 

where E is a small, real, positive parameter. 
We shall review two versions of a multiple scales analysis, 

which are completely equivalent. The first is described in 
[l] and involves the generation of a hierarchy of linear 
partial difference equations from which secular terms are 
removed to ensure a bounded solution of (1). 

For this purpose it is assumed that the solution u(x, t) of 
(1) can be expanded in the form 

co 
4x, t) = 1 E~u(‘%‘&, J’, , To, T,, Td, (4) 

n=l 

where 

x, = EkX, k=O, 1, (5) 

8=kX,-UT,,, (14) 

and where the carrier wave number k is related to the carrier 
wave frequency o by the linear dispersion relation 

o=qk-yk3. (15) 

We shall restrict k to nonzero values only, since the trivial 
case k = 0 requires special treatment in the analysis which 
follows and is of little interest to us in any case. 

Recall that u(x, t) must satisfy the periodic conditions 
specified in (3), and to ensure this with respect to at least the 
fast scale in space we must restrict the wave number k to the 
values 

and k = k, = 2xm/L, m = 1, 2, . . . . (16) 

T, = ekt, k = 0, 1, 2. (6) We now substitute (13) into (10) and find that in order to 

For k = 0 we have the fast scales in time and space, and for obtain a bounded solution u(~), we have to remove secular 

the higher values of k we have progressively longer space terms by imposing the condition 

and slower time scales. 
We also use the expansions AT, + CgA,, =o, (17) 

where 
(7) 

C,:=g=q-3yk2 (18) 
and 

$iy& (8) 
is the linear group velocity associated with the operator L. 

n We then find that (10) has a solution of the form 

based on the chain rule for partial differentiation. When u(‘)= [5/(6yk2)][A2 exp(2i0)+A*2 exp( -2i0)] 
substituting (4) through (8) into (1) and collecting terms 
containing equal powers of E, we generate a hierarchy of + B(J-I 3 T,, TA (19) 

equations of which the first three members are where B is a function yet to be determined. 

Lu”’ = 0 (9) 
Substituting (13) and (19) into (1 l), we find that secular 

terms can be removed by imposing the conditions 
Lu’2’ = -u(1) - Tl qwyt - gu’%!j(j - 3+&& (10) 
Lu'3'= -u(2)Lu(1) B,,+?B,,+i(lAl'),,=O, (20) 

7.1 T2 

- iC(u %(2))xo + $4;,'] 
A, + i[[*/(6yk)l A IAl2 + ickBA + 3iyA,,,, = 0, (21) 

- 3Y(G&Y, + d&,x,), (11) as well as the condition that B should be a real function. 
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Equations ( 17), (20), and (21) are now the required and, for I 3 2, 
modulation equations, describing the behavior of the 
envelope A. Since the function B is not uniquely determined 0, = vr, 
by the equation above, we are free to impose additional con- 
ditions. Such conditions can be chosen for convenience, = V,(XI, T,, T*)+ f &~+l-rWrs(X1, T,, T,). (31) 
since the only effect they could have is to cause unbounded s = r 
growth on a time scale of O( 1/s3) in uc4) and further terms 
of (4). For small enough E, this can be neglected for our 

Note that 0 is still given by (14) and k by (16). 

purposes. 
We now substitute the expansion (26) into (1). When 

Thus, from (17), 
doing so, we now use the expansions 

where 

A = A(X, T*), 

x=X1-C,Tl. 

(22) 
a . a a 
at= -mo+.2jT1+tz2~ (32) 

and 
(23) 

If we make the physically reasonable assumption that B also 
satisfies (17), (20) is seen to have a solution 

a a 
-=irk+E-, ax ax, (33) 

B(X T,) = -(1/W*) IAl2 

so that (21) can be rewritten as 

(24) 
instead of the more general (7) and (8). Putting the 
coefficient of each eire equal to zero, we find that (1) is 
equivalent to the following system of equations: 

A,,+3iykAxK-- [ii2/(6yk)] A \Al*=O. (25) 

This is the nonlinear Schrodinger equation in the variables 
8 and T,. Note that (17) describes a linear modulation 
property of (1 ), whereas (25) gives some information about 
the modulation effects of the nonlinear terms in (1). Thus 
(17) implies a modulational envelope moving at group 
velocity C, on the time scale T, , whereas further nonlinear 
modulations on the slower time scale T2 are governed by the 
nonlinear Schrodinger equation (25). It can in fact be 
shown, by using the known properties of the nonlinear 
Schrodinger equation, that the envelope A is stable in all its 
modes. (See, for instance, [ 131). 

Equations (13) through (25) can also be derived in a 
different way, using the version of the multiple scales 
analysis used in [ 16, 121. Here we start with the expansion 

00 

4x, f) = 1 4X,, T,, T2, e) eirB, (26) 
r= -cc 

where 

u, = ~~‘v,(x,, T, , T,, E) (27) 

and 

6, = 2, 6,=&,= Irl, r # 0, (28) 

and 

00 = VOW,, T,, T2), (29) 

VI= v,(Y,, T,, T2) (30) 

- irou, + Ed, + Ed,, + irqku, + rpz(~,)~, 

+y [irk+c&y u. 

+5 f [iksu,+E(u,)x,] u,-.=O. 
s= --m 

(34) 

We now wish to have (l), and therefore (34) for each r, 
satisfied up to terms of O(s3). We note that it is therefore 
only necessary to consider (34) for Irl < 3. 

First put r = 0 in (34). The term of lowest order in E is 
then O(s3), and putting the coefficient of e3 equal to zero 
yields the equation 

(~O)T,+~(~O)X,+i(l~112)XI=0. (35) 

Next put r = 1 in (34). The requirement that the coefficient 
of s should vanish yields the linear dispersion equation (15). 
By next putting the coefficients of E* and s3 to zero as well, 
the following two equations are obtained: 

(WT,+C,V%,=O~ (36) 

(~l)T2+3i~4~I)X,x, + ik[[ V, V, + VT V2] = 0. (37) 

Equation (34) with r = 2 contains O(E’) and O(.s3) terms. 
From the former we obtain, with the aid of the linear 
dispersion equation (15), 

v, = ivl 
6yk” 
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and from the latter it follows, after some manipulation and We next define the following divided difference operators: 
using (15), (36), and (38): 

A, := (E, - 1)/h 
w 

22 
= iiCGlx, 

6yk3 ’ (39) 

Finally the case r = 3 in (34) involves only O(s3) terms, and 
from these, with the aid of (15) and (38), follows the equa- 
tion 

v3- r2v: 
48y2k4’ (40) 

(46) 
v, :=(l -E;‘)/h (47) 

6.x := (A, + V,)P (48) 

.D~:=(Ex+l+E;1)/3=l+h(d,-V,)/3 (49) 

A, := (E,- 1)/r (50) 
v, := (1 - E;‘)/t (51) 
6, := (A, + V,)/2. (52) 

If we now identify V, with A, and V, with B in the pre- 
The Zabusky-Kruskal scheme can then be written in the 

vious version of the multiple scales analysis, we see that 
form c15], 

(35), (36) is the same as (20), (17), respectively, and when 
we combine (37) and (38) we obtain (21). Thus exactly the 
same results are obtained as before. 

In addition we impose the periodic conditions 

3. MULTIPLE SCALES ANALYSIS OF THE ” uj+N=u; 
ZABUSKY-KRUSKAL SCHEME 

and prescribe initial data of the form 
Before we analyze the Zabusky-Kruskal discretization of 

(1) in a manner analogous to the method in [ 16, 121 
described in the previous section, it is first necessary to 

up=&f/, fi= O(l), fi+‘v=fj> 

introduce some notation. 
In order to discretize in space, we divide the interval 

[0, L] into N subintervals, using the grid length 

h = L/N. (41) 

We shall assume N to be even throughout this paper for 
the sake of definiteness; odd N will require a few 
straightforward modifications in the analysis which follows. 

Also introducing a time step z, we use the symbol u,” to 
denote the solution of the difference scheme at x = hj and 
t = nr, where j and n are integers, i.e., 

l.4; = u(hj, nz). (42) 

We next introduce the shift operators E, and E, in space 
and time, respectively, defined by 

E,f(x, t) = l-(x + h, t) 
E,f(x, t) = f(x, t + ~1, 

(43) 

(44) 

(53) 

(54) 

(55) 

where E is a small, real, positive parameter as before. 
We next define the following multiple-scale coordinates in 

space and time, analogously to (5) and (6), 

X, = t?‘hj, p=o, 1, (56) 
T, = EPm, p=o, 1,2. (57) 

Obviously we will require equations analogous to (7) and 
(8). We will now proceed to establish these. 

First we have to define partial difference operators 
corresponding to the various variables X, and T,. We 
define the partial shift operators E, and Exp: 

Exof( . . . . Xp, . ..)=f( . . . . Xp+~Ph, . ..) (58) 

ETJ( . . . . T,, . ..) = f( . . . . T, + E~Z, . ..). (59) 

Thus if we have a discrete function u(X,, Xi, T,,, T, , T,), 
then 

Eru = E,E,,E,u (60) 

so that 

Exu;=u;+l; E,u;=,"+'. (45) 

and 

E,u = ExoEx,u. (61) 
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We also define 

A Tp := (ET, - 1 H&Pt) (62) 

v, := (1 - EQ)/(&?) (63) 

A x, := b%, - 1 v(&Ph) (64) 

v, := (1 - E,‘)/(&%) (65) 

6, := (4, + VxJ2 (66) 

6, := (A T,, + %JP. (67) 

We now state the following lemma, which is the keystone 
to our multiple scales analysis: 

LEMMA 3.1. Let for any function 

.f = f@-0, x, > ...3 x,,, T,, T,, . . . . T,,,), (68) 

where 

X, = Ephj, p=o, 1 , ..‘, n, (69) 

T, = Cm, p=O,l m, 2 . ..? (70) 

and let Exp and E, be defined as in (58) and (59). Then the 
divided difference operators dej?ned by (62) through (65) 
satisfy the relations : 

A,=A,+ i E~~Y~&,Ex;-E+, (71) 
/?=I 

vY=YY~+ i E~V,~E,,‘E~,’ . ..E.L, P (72) 
p=l 

A,=A,+ f E~~T~ET~ET,--%-, (73) 
p=l 

V,=V,+ f E~V~,E;~‘E;,~...E~~ n 1. (74) 
p=l 

Proof We shall only prove (71). The 
relations are proved similarly. First note that 

Then 

E., = E, E,, ’ . . E,. 

=;[ i (E,E,;..E,~-E,E,; 
p=l 

+E,-1 
I 

= ; [E, Ex, . . . E,” - 1 ] 

=&i)=d.,. 1 

. . Ex,-,) 

rest of the 

(75) 

(76) 

Lemma 3.1 now gives us the expansions to use instead of 
the chain rules (7) and (8), using m = 2 and n = 1. The 
expansions we shall need in our analysis, can then be 
written in the form 

A,=A,,+E~,, (77) 

v, = v, + axi (78) 

A =A,+E~ , TI +&‘a T2 (79) 

V,=VTo+EVT,+E2VTZ (80) 

6.x = 6x0 + A, 631) 

6,=6,,+EST,+E2ST2 (82) 

Px = Px,, + Ejx, > (83) 

where (77) through (83) were obtained from (48), (49), 
(52), and (71) through (74), and where expressions for the 
barred operators may be obtained directly from (71) 
through (74). 

We are now ready to commence with the discrete multiple 
scales analysis of (53). We start with an expansion similar to 
(26), but in this case we have to take into account the effect 
of aliasing; i.e., only a finite number of modes can be 
resolved on a grid of discrete points in [0, L]. 

First let 

t3 = khj - QnT, 

where k is now limited to the finite set of values 

(84) 

k=F, m= -N/2+1,...,N/2, (85) 

due to aliasing. 
Next let 

GUI 
q = c c,urW1, T,, T2, E) eiro, (86) 

r = ~ C//2] 

where I is obtained by letting s and I be the integers with 
least absolute values such that 

m s -=- 
N 1 (87) 

and 

if 1 even 
if 1 odd, (88) 

and where 

1 1 if Irl <l/2 
cr= l/2 if Irl = l/2. (89) 
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It is easy to see that the exponentials difference scheme (53). In this process we make use of (77) 
through (83), as well as the expansions 

exp(irkhj)=exp[ir($f) j] E,, = 1 + E&., + EXTRA&., 12, (99) 

=exp[ir(F)j] (90) 
E;,’ = 1 - EZdT, + ~~t*d~,v~,/2, (100) 

from which follows 

can only take on 1 different values, corresponding to 

-l/2 -I- 1, . ..) l/2 if leven 
r= 

-(I- 1)/2, . ..) (I- 1)/2 if 1 odd, (91) 

hence the summation range used in (86). In the case where 
1 is even, the exponential corresponding to r = l/2 is exactly 
the same as the one corresponding to r = -l/2, and there- 
fore the coefficients c, are usually introduced (see [2]) to 
write (86) in a more symmetric form. 

We shall also have occasion to use the fact that products 
of the form 

CWI 
P= c c, U, exp( irkhj) 

* = - [l/2] > 

as well as 

Ax, = 6x, + E@$‘x, 
‘G, = 6x, - &A xl%, , 

(103) 

(104) 

from which follows 

s;, = A,,&, + E2h2A$V;,/4. (105) 

( CWI 
x c c, V, exp( irkhj) 

> 
(92) We find that, up to terms of O(E’), 

, = - [l/2] 

S1(u,eire) = P,(u,e”‘) (106) 
can be written in the convolution form S,(u,ei”) = Qr(u,eire) (107) 

cw1 c//*1 
P= 1 c c,c, U,, If,,-,, exp imkhj. (93) 

px(u,eire) = S,(u,eire) (108) 

n = - [l/2] m = - [l/2] 

As in the continuous case, we put 

u, = E%(%, T, , T2, ~1, 

where 

GxAXVX(u,e’rB) = T,(u,eire), (109) 

where, up to terms of O(E*), 

(94) P, = -i&/Z + EC,dT, 

+&2(C,b:Tz-itS,dT,VT,/2) (110) 

and 

so = 2, 6, = PI, I4 = 1, 2, . . . . [PI, 

00 = VOW, 3 T, 3 7’2), 

“I= VIM,, TI, T2)=uT1, 

u,=u*_,= V,(X,, T,, T2) 

+ f g+l--’ wrpW,> T,, T2h 
p=r 

r = 2, . . . . [l/21. 

(95) 
Q, = is,,/h + EC~C?~, + iE2hs,AX,Vx,/2 (111) 

S, = (1 + 2c,)/3 + (2ieh/3) shSX, 

+ (E2h2/3) wb,Vx, (112) 

(96) T, = (2ilh3) sc(ch - 1) + (2E/h2)(ch - 1)(2c, + 1) 6,, 

(97) + (jE*/h) %(4c, - 1) A,,V,, , (113) 

where 

s,, = sin( rkh), c,, = cos(rkh) (114) 

(98) and 

We now wish to substitute the expansion (86) into the finite s, = sin( rrRz), c, = cos( rf2z). (115) 
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After substituting (86) into (53) and putting coefficients of 
c, exp( ire) equal to zero, we obtain the system of equations 

x(Q~~~v,~,)E~~+~,~~+~E~~T,u, 

= 0, r = 0, 1, . . . . [f/2]. (116) 

As in the continuous case, we now wish to satisfy (53) and 
therefore the system (116) up to terms in s3. Thus we need 
only consider the cases r = 0, 1, and 2 in (116). 

When we put r = 0, we find that the lowest order term in 
E is O(s3), and putting this equal to zero yields the equation 

67) Vo+r16,, vo+ (@1/3)(cos(kh)+2) 

x (V, 6,, VT + v:h,, V,) = 0. (117) 

We can simplify this equation somewhat by making use of 
the discrete analog of the product rule of differentiation, 
which we state in the form of the following lemma: 

LEMMA 3.2. Zf V= V(X,) and W= W(X,), then 

6,,(vW)=(E,,V)6,,W+(E~,‘W)6,,V. (118) 

Furthermore, 

6,,( VW) = vi?,, w+ wax, v 

+ Eh(Ax, Vd,, W-V,, Wd,, V). (119) 

Proof The proof of (118) is straightforward: 

2&h&,( VW) = E,, VEX, W-E,,’ VE,,’ W 

= E,, V(Ex, W-E,,’ W) 

+ E;,’ W(Ex, V- E,,’ V) 

= 2ch[(E,, V) 6,, W+ (E,,’ W) 6,, V]. (120) 

We then write 

6,,( VW) - V6,, w- Wh,, v 

= [(E,, - 1) V] 6,, W+ [(E,,’ - l] W6,, V 

= &h[A,, I’d,, W-V,, WC?,, V], (121) 

from which (119) follows immediately. 1 

Returning to (117), we see that, according to (119), 

fvx,v+ v:sx, v, =~,,w,12)+w~ (122) 

and since (117) was obtained from the coefficient of 

an O(s3) term in (116), the O(E) term in (122) may be 
neglected, so that (117) becomes 

b,, Vo + ~6x1 Vo + (t’c,P)(coW) + 2) 

x~x,(Iv11’)=0. (123) 

We next put r = 1 in (116), and putting the coefficient of E 
equal to zero, we obtain the discrete linear dispersion 
equation 

(sin &)/r = q(sin kh)/h + (2y/h3) 

x sin kh(cos kh - 1). (124) 

We may note at this point that if we perform a standard 
Von Neuman analysis on the linearized Zabusky-Kruskal 
scheme 

S,u~+v16,ui”+yS,A,V,ui”=O; (125) 

i.e., if we put 

u,” = rn exp( ikhj), (126) 

then we find that the amplification factor r is given by 

r = - zia(kh) + ,/w, (127) 

where a(kh) is the right-hand side of (124). Thus the 
requirement Irl < 1 for linear stability leads to 

b(kh)l d 1, (128) 

and we see that in terms of (124) this simply means that we 
require that 

lsin S22rl < 1 (129) 

or, in other words, that Q should be real. It is well known 
[S, 93 that the condition (128) leads to the following 
necessary and sufficient conditions for linear stability of 
(53): 

t < 2h3/(3 fi y) (130) 

and 

T < h/v. (131) 

Returning to our multiple scales analysis, we next put the 
coefficient of .s* equal to zero to obtain the equation 

~,,v,+v,~x,v,=0, (132) 
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where 

vg := g = q cos kh + (2y//?)[cos(2kh) - cos kh] (133) 

is the discrete linear group velocity. Finally, when we put 
the coeflicient of &3 equal to zero, this yields 

( - ir/2) sin .&A T,VT, V, + cos SZt6 T2 V, 

+ (i/2*/2) i sin kh + $ (2 sin 2kh - sin kh) 1 

+&{c,(l+Zcoskh)sin2kh 

-c2(l+2cos2kh)sinkh} V:V, 
1 

=O. (134) 

When I < 4, the expansion (86) contains only the terms for 
which JY/ d 1, so that Eqs. (123) through (134) are sufficient 
to ensure that (86) satisfies (53) up to terms of O(s3). This 
corresponds to the cases m = N/2 (or kh = rr) and m = N/3 
(or kh = 2x/3 ). 

However, for 12 4 we have to proceed with our analysis 
and consider higher values of r. Putting r = 2 and the coef- 
ficient of the s2-term equal to zero in (116), we obtain, after 
some manipulation and with the aid of the linear dispersion 
relation ( 124) 

where 

(135) 

A(h, k, z) = 
-h2(1+2coskh) 

6g(k k 7) 
(136) 

and 

g(h, k, z) = (cos kh - 1)[qh2 + 2y(2 cos* kh 

+2coskh-l)]-(cosQt-1) 

x [qh2 + 2y(cos kh - l)], (137) 

provided that 

g(k k, 7) #O. (138) 

Note that since [l/2] 2 2 in these cases, c1 = 1. 
With the exception of the cases sin kh = rc and 

cos kh = - 4, which are excluded anyway for Irl > 1, we find 
that if the condition (138) is violated, it is impossible to 

remove all the O(.s*) terms in (116) (except in the trivial case 
V, = 0, or the linear case i = 0), so that the expansion (86) 
is only valid up to the O(E) terms. Since the condition (138) 
does not have a continuous counterpart when k #O and 
y # 0, its violation should correspond to spurious behavior 
of the numerical scheme (53). We shall return to this in 
Section 5. 

We may note in passing that g=O is also the condition 
for exp(2i0) to satisfy the linear difference equation 

If we used the discrete counterparts of (9) through ( 1 1 ), this 
would correspond to irremovable secular terms due to a 
second resonance phenomenon. This can only be avoided 
by using a different type of expansion than (86). We will not 
pursue the matter further in this paper. 

Returning to (116) with r = 2, we next put the terms in 
O(s3) equal to zero, which yields the condition 

= -cos(2Qr) 6,, I’, - r] cos(2kh 

+ $ (cos(4kh) - cos(2kh)) 1 6,, V, 

- (&,/3)(cos kh + 2 cos 2kh) V,6,, I’, . (140) 

Obviously this condition cannot be satisfied either if (138) 
is violated. 

We can simplify (140) by using Lemma 3.2. By (119) we 
may write 

V, 6,, V, = iS,,( Vi)* + term in E (141) 

and, since (140) already corresponds to a term in s3, the 
term in E may be neglected. Furthermore, from (135) we 
obtain 

where we have used (132) and the fact that Lemma 3.2 is 
equally valid with respect to divided differences in T, and 
where any terms in E were again neglected. Using these 
relations and (135) in (140), we finally find the relation 

W2, = Wk k, T) 6,, ( VI j2, (143) 
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where 

2 sin kh g(h, k, z) T(h, k, z)/h3 

= A - I’, cos(20~) + Y/ cos 2kh 

+ $ (cos 4kh - cos 2kh) 1 
+ (cos kh + 2 cos 2kh)/6. (14) 

For the cases where l< 5, the expansion (86) is truncated 
at (~1 = 2, and no further conditions are necessary to ensure 
satisfaction of (53) up to terms in O(.s3). Besides the 
previously excepted cases m = N/2 and m = N/3, this now 
also involves m = N/4 (kh = 7c/2), N/5 (kh = 2x/5), and 2N/5 
(kh = 4x/5). 

For all other cases, we need also consider (116) with 
r = 3, in which the lowest order terms in E are O(s3). (Note 
that in these cases we have [Z/2] > 2 and therefore c2 = 1.) 
Putting the coefficient of .s3 equal to zero, and using (135) 
and (124), we obtain the relation 

where 

V, = [*K(h, k, t) I’;, (145) 

K(h, k, T) 

= -h*A(h, k, 2)(4coskh- 1)(2coskh+ 1) 
3f(h, k ~1 

and where 

(146) 

f(h, k, T) = 4(cos* kh - l)[rjh* + 2y(4 cos3 kh - l)] 

-4(cos* Lb - l)[qh* + 2y(cos kh - l)], 

(147) 

and where both the conditions (138) and 

Ah, k, ~1 #O (148) 

must be satisfied. 
When ( 138) is satisfied, but not ( 148), the expansion (86) 

can satisfy (53) only up to terms in .s*. This does not have a 
counterpart in the continuous case either and could be 
another source of spurious behavior. We will pursue this 
further in Section 5. Note also that violation of (148) 
corresponds to exp(3ifI) being a solution of the linear 
difference equation (139). Thus it can also be viewed as a 
type of third-resonance phenomenon. 

We have now managed to express V,, W,,, and V, in 
terms of Z’, , and it now remains to do the same for V,,. This 
is done by finding a solution of (123) which is consistent 
with the relation (24) in the continuous case (recalling that 
BG V,,). 

581/lOl/l-5 

Similar to the continuous case, V,, is not uniquely deter- 
mined by (123), and we are free to impose the additional 
and physically acceptable condition that V, must also 
satisfy (132), i.e., 

6, v, = - v,s,, v,. 

Substituting into (123) we find that 

(149) 

icl(cos kh + 2) / VII2 
3(V,-?) I 

= 0, (150) 

provided that 

?Z vg. 

This then leads to the relation 

(151) 

v 

0 
Jc,(coskh+2) I V , I *  

3(V,-?) ’ 
(152) 

which is seen to be consistent with (24) in the limit where 
kh+O, h+O,andr-+O. 

Note that the condition (151), like (138) and (148), does 
not have a discrete counterpart either, and its violation 
could therefore also lead to spurious behavior of the solu- 
tion of (53). To get a better idea of what it means if (151) is 
violated, note that if q = V,, then both V, and V, satisfy the 
same difference equation, 

6.,u+&,u=O, (153) 

with the result that we are no longer able to find a specific 
relation between V, and V,; we can only conclude from 
(123) that 

~x,w,I’)=0 (154) 

and that V, and V, both represent a motion at velocity 9 
along the discrete grid. 

In Section 5 we show that violation of (151) does indeed 
lead to spurious behavior. 

To conclude our analysis, we substitute (135) and (152) 
into (134) to obtain the following difference equation for 
v, : 

( - iz/2) sin 5224 ,V., V, + cos SznS,, V, 

+ (ih*/2) 
[ 

i sin kh + $ (2 sin 2kh - sin kh) 1 
xd v v +ii*sinkh c,(coskh+2) 

XI XI 1 3h C vg - rl 
+A{2cI(l+2coskh)coskh 

-c2(l+2cos2kh)} 1 V, IVl12=0. (155) 
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In all but the few cases noted above, I> 5, so that provided that the conditions (138), (148), and (151) are 
c, = c2 = 1. We may then rewrite (155) in the form satisfied and where V, satisfies (156) and (132). 

( - iT/2) sin QTA ,V,, V, + cos QzS,, V, 

[ 
f sin kh + $ (2 sin 2kh - sin kh) 1 + (i/?/2) 

4. THE MODULATION EQUATIONS FOR 
SAW-TOOTHED WAVES 

The modulation equations derived in the previous 

x 4,&j J’, + 
ii2 sin kh cos kh + 2 section, as well as the expansion (86) take on their 

3h [ vg - ? 
simplest forms in the case where m = N/2 and kh = rc. This 

+A(1+2coskh) 1 
corresponds to a carrier wave with wavelength 2h, which is 

V, )V,12=0. (156) the smallest wavelength that can be resolved on the grid we 
are using. In this case I = 2, so that (86) becomes 

It is easy to see that in the limit when h, z, kh, 52~ --+ 0, 

and 

A+ 
1 

(157) 
u;=n’V,+i [VPeC”+ VIei’], (163) 

6yk2 
where 

V, + q - 3yk2, (158) 8=zj-QSZrn (164) 

the vanishing terms being second order in h and r. Thus, in and, according to (124) 

this limit (156) becomes the nonlinear Schrodinger equation 
522=0 or Q7=7C. (165) 

(V,)?,+3iyk(V,),,,,-~ V, IV~12=O~ (159) Thus the two exponentials in (163) are real and both equal 
to either (-1)jor (-1) i+n We may therefore regard the . 

which is exactly Eq. (25) with V, instead of A. Thus (156) is function V, as real as well. 
a second-order finite difference scheme for the nonlinear From (133) we find that the linear group velocity is given 
Schrodinger equation (159). However, together with (132) by 
it also describes the behavior of the variable amplitude V, in 
(86). +(Wh2-vl) if Qr=O 

Note also that 
v = 

R { - (Wh2 - rl) if Qt = 71. (166) 

1 
T(h, k, z) + - 

6yk3 
(160) From (152) we obtain V,, 

and 

K(h, k, T) -, - 48jzk’ 

in the limit when h, kh, r, Qs + 0, so that the expressions for 
V,,, V,, V,, and W,, are also consistent with those given by 
(24) (38), (40) and (39), respectively, for the continuous 
case. 

We have therefore shown that, if I> 5, then the expansion 
(86) becomes, up to the O(s3) terms, 

u,” = E( V,e” + V:eC’@) + [E2 A[ Vfe2” + (V:)” e-2ie] 

Y,=6(;vJ,, g 
U-:h21ClW - M2)1 
-U’:h2/W) 

;; “,:I”, (167) 
3 

provided that, in the case where Qr = 0, q # 2y/h2 (which is 
the condition V, # q mentioned in the previous section). In 
the next section we shall show what happens when 
q w 2ylh’. 

The only remaining equations from the previous section, 
which is relevant here, are (132) and (134). The latter takes 
the very simple form 

T 
3(V,-rl) I 

+ [E3{c3[K[ V/:e3” + (VT)’ e-3ie] 

+ iT[d,,( V,)2 e2” - a,,( VT)’ eC2ie]}, 

and into the former we have to substitute one of the two 
possible expressions for Vg given by (166). The difference 

(162) equations for V, are therefore linear, so that modulations of 
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a saw-toothed carrier wave can be regarded as a linear 
phenomenon. 

Taking all of the above into account, we conclude that 
(163) can take on one of two forms, 

&2V:h2 
‘;= 12(2y-qh*) 

+.sV,(-1)‘, (169) 

where 

b, J’, + Wh* - rl) b, V, = 0, 

provided that q # 2y/h*, or 

(170) 

in= 
/ 

-iVfE2h2+Ev (-l)j-n 

24~ 
1 9 (171) 

where 

6,, V, - (4y/h2 -q) 6,, V, = 0. (172) 

Since both (132) and (168) are linear, we can expand V, as 

where 

N/7- 
v, = 1 Q, cm 4,, (173) 

r=O 

~,=K,&hj-w,~nz-w~~*nt+~, 

and where we must require that 

(174) 

K,Eh = 2nr/N, r = 0, 1, . . . . N/2, (175) 

to ensure a solution of (53) which satisfies the periodic 
conditions. If we put this expansion into (132) and ( 168), we 
find the following two dispersion relations: 

sin w, EZ = (r/h) V, sin KEh, (176) 

sin w2 s2r = 0. (177) 

Equation (177) implies that w2s2t can be either 0 or rt, so 
that (173) must be modified as 

N/2 
V, = 1 [a,, + (- l)‘cc,,] cos(K$hj- WIEnt +fl,.). (178) 

r=O 

As in the case of (124), a standard von Neumann stability 
analysis performed on (132) will yield the stability condition 

(T/h) 1(4y/h2 - q) sin K,&hl 

= lsin w, ~71 Q 1, r = 0, . . . . N/2, (179) 

from which we obtain the following necessary and sufficient 

condition for the stability of (132) in the case of a saw- 
toothed carrier wave: 

h3 
T’4y-rlh*’ (180) 

Depending on the relative values of y and ye, this condition 
can be slightly more severe than (130) (e.g., when q = 0). 

Finally, we note that ( 169) and ( 171) are two particular 
solutions (up to O(s3)) of (53) with saw-toothed carrier 
waves. We can combine these two cases into a single 
solution by replacing the expansion (163) with 

u,” = E2( vg) + ( - 1)” vb”) 

+E[V\l)(-l)j+ v’,Z’(-l)‘P”], (181) 

where Vr) and V ‘1” are real functions of X, , T, , and T2. 
Using the techniques of the previous section, we sub- 

stitute (181) into (53), noting that 

S,(-l)i=6x,(-l)j-“=6,(-l)j=6,(-l)j-”=0, 

A,(-I)‘= -(2/h)(-1)-‘=d,(-l)j+fl, 

and 

&J-l)‘= +(2/h)(-l)‘=V,,(-l)j+‘, 

and obtain a system of equations by first putting the coef- 
ficients of each of ( - 1 )I, ( - 1 )j-“, ( - 1 )“, and ( - 1)’ equal 
to zero, and then also the coefficients of E, E’, and c3 in each 
of the resulting equations. This yields the following set of 
equations: 

6.,VI”+(4y/h2-‘I)6,,VI”=0, 

6,,V(,Z)-(4y/h2-r])6,,V(,2)=0, 

6 v”‘=6,v’2’=o T2 I I J 

(6,, +I.@,,) vp= -~6,,c(v:‘))2+(vi2))21, 

(6,,-t&J Vg,=$?,,[Vl”V:“1. 

(182) 

(183) 

(184) 

(185) 

(186) 

If we make the physically reasonable assumption that Vf) 
satisfies the same equations (182) and (183) as V(,i’, for 
i = 1,2, we can, similarly as in the previous section, express 
Vr’and Vf’intermsof V/:“and Vy’.Then(l81)becomes 

(V:“)2+(V~2~)2+(-l),, V\‘)V~2) 
2y - qh2 Y 1 

+ V\“(-l)‘+ V(,2’(-1)‘-“, (187) 

provided that 9 # 2ylh*. 
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Note that for this more general type of solution, the 
stability condition (180) is still valid, as well as the condi- 
tion r] # 2y/h2. 

TABLE I 

Mode Numbers (m) and Values of 9 for Which Eq. (191) 
Is Satisfied 

5. SOME NUMERICAL EXPERIMENTS m 4 In 1 m I 

In this section we report the results of several numerical 
experiments. We are especially interested in the cases where 
the conditions (138), (148), and (151) are violated, since in 
these cases our multiple scales analysis breaks down for all 
but a few of the higher carrier wave modes. 

It should be recalled that, since E is supposed to be small 
in (86) and (162), we are really considering solutions of (53) 
which are approximately of the form 

i -9.891356 18 -0.549300 35 3.711460 
-9.602409 19 -0.025281 36 3.655535 

3 -9.191731 20 0.474235 37 3.579612 4 - 8.707842 2 1 0.946053 38 3.487670 
5 -8.178529 22 1.387138 39 3.383788 
6 - 7.620031 23 1.794708 40 3.272076 

i -7.041867 24 2.166328 41 3.156593 
- 6.450363 25 2.5OOOOO 42 3.041272 9 - 5.849971 26 2.794243 43 2.929843 

10 - 5.244235 27 3.048139 44 2.825760 
3.261374 45 2.732136 
3.434246 46 2.651690 

with 8 given by (84) and (124) and where V, must satisfy 
(132) and (155). 

In the case of carrier wave numbers for which one or more 
of the conditions (138), (148), or (151) are violated, the 
higher order terms in E may become comparable to, or even 
dominate, the first-order terms to such an extent that (188) 
can no longer be considered to be true. This should show up 
in numerical experiments. 

Let us first consider condition (138): First of all, we note 
that, if we consider carrier wave numbers k which are not 
near to zero, violation of (138) is equivalent to the equation 

13 -3.424130 30 3.567650 
14 -2.825615 31 3.663056 
15 -2.235856 32 3.722460 
16 -1.657811 33 3.748336 
17 - 1.094562 34 3.743582 

47 2.586701 
48 2.538972 
49 2.509809 
50 Not applicable 

We wished to assign to q a value which would cause (191) 
to be satisfied for one particular value of the wave number 
k. Table I shows such values of q for each of the values of 
k = mn, m = 1, . . . . 50. We assigned to q the value of 

r/ = 2.794243, (193) 
qhZ + 4y cos kh(cos kh + 1) - 2y = O(T=). (189) 

which causes the 26th carrier mode (i.e., k = 26~) to satisfy 
Since, from (130), linear stability requires that r = O(h3), we (191). 
can obtain a very good approximation if we neglect the We used the initial condition 
0(r2) term in (189), so that violation of condition (138) will 
occur for carrier wave numbers approximately satisfying uj’ = E cos(hnj) cos(mnhj) (194) 

coskh=1[-1+(3-qh2/y)“2]. 2 (190) and ran the scheme (53) for 100,000 time steps in double 
precision, after each 2000 time steps taking a discrete 

If we consider the semi-discretized scheme only, by letting Fourier transform of the ~7. The time evolution of each 
r + 0, Eq. (190) becomes exactly equivalent to Fourier mode was then plotted as a three-dimensional 

graph. Figures 1 through 5 show the results when E =O.Ol 
g(h, k, z) = 0. (191) 

Thus both the scheme (53) and its semidiscretized version 
should show some spurious behavior at and near carrier 
wave numbers satisfying (190). To see what such behavior 
may be, we performed numerical experiments in which we 
assigned the following values to the parameters in (53): 

L = 2.0 

N= 100 (so that h = 0.02) 

t = 0.001 (192) 
y = 0.0005 FIG. 1. Time evolution of Fourier modes of the solution of (53). Initial 

data is (194) parameter values given by (192) E = 0.01, q = 2.794243, and 
c = 1.0. m=24. 
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FIG. 2. Same as in Fig. 1, but with M = 25. 

FIG. 3. Same as in Fig. 1, but with M = 26. 

FIG. 4. Same as in Fig. 1, but with m = 27. 

FIG. 5. Same as in Fig. 1, but with rn = 28. 

and m = 24, 25, 26, 27, and 28, respectively. Since (194) can 
be written as 

u/o = (~/2) cos[n(m + 1) hj] 

+ (c/2) cos[n(m - 1) hj], (195) 

there are initially only the two modes with wave numbers 
(m - 1) rt and (m + 1) x present. In the cases of m = 24 and 
m = 28 these remain the only two modes throughout the 
calculation. Any nonlinear effects here are so small that they 
do not show up on our graphs. This is because in the term 
(II + U) U, in (1 ), g is much larger than U, which acts here as 
a small nonlinear perturbation which remains small. 

When m = 25, 26, and 27, however, we see significant 
nonlinear activity. In each case the 48th mode is excited 
and seems to exhibit a near periodic behavior in time, 
corresponding to a similar type of behavior of one or both 
of the two initial modes. In total the solution shows 
almost recurrence of the initial state, with a much 
shorter recurrence time in the case m = 26 than in the 
other two cases. It is interesting to note that the 20 term 
in (86) contains a carrier wave which, on a much finer grid, 
would have had a wave number of 52~ On our grid, 
however, this would alias to a mode with wave number 48q 
corresponding exactly to the excited mode. This makes 
sense, since g = 0 would tend to magnify the amplitude of 
this particular carrier wave, and in this case such magnifica- 
tion is sufficient to show up clearly on our graphs. 

In other experiments, with larger values of E, even more 
pronounced nonlinear activity was noted in the vicinity of 
m = 26. Thus at and near m = 26 the solution of (53) 
deviates sharply from a modulated harmonic wave 
described by (188). This is only to be expected, however, 
since our multiple scales analysis, which is based on the 
assumption that we have a solution approximated by (188) 
for small E, breaks down at m = 26. 

We next turn to an investigation of the condition (148). 
From (147) we see that, for k not near zero, violation of this 
condition is equivalent to 

$z2 + 2y(4 cos3 kh - 1) = O(z’), (196) 

and, as before, we can obtain a very good approximation by 
neglecting the O(r’) term. Thus the carrier wave number k 
for which 

f(kk,z)=O 

is approximately given by 

(197) 

(198) 
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TABLE II TABLE III 

Mode Numbers (m) and Values of r] for Which Eq. (197) 
Is Satisfied 

Mode Numbers (m) and Values of r) for Which V, = r) 

1 - 7.441332 18 1.728113 
2 - 7.265689 19 2.001123 
3 -6.978321 20 Not applicable 
4 -6.587092 21 2.346194 
5 -6.102629 22 2.434208 
6 - 5.537959 23 2.480312 
7 - 4.908064 24 2.497525 
8 - 4.229370 25 Not applicable 
9 -3.519186 26 2.502476 

10 -2.795120 27 2.519688 
11 - 2.074483 28 2.565793 
12 - 1.373713 29 2.653806 
13 -0.707823 30 2.795085 
14 -0.089914 31 2.998867 
15 0.469252 32 3.271888 
16 0.961586 33 3.618087 
17 1.381915 34 4.038415 

9 M rl 

35 4.530748 
36 5.089915 
37 5.707824 
38 6.373714 
39 7.074485 
40 Not applicable 
41 8.519188 
42 9.229372 
43 9.908066 
44 10.53796 
45 11.10263 
46 11.58709 
47 11.97832 
48 12.26569 
49 12.44133 
50 Not applicable 

this approximation becoming exact for the semidiscretized 
version of (53). 

Using the same values for the various parameters given in 
(192), we sought to choose 9 in such a way that (197) is 
satisfied for some particular value of k. Table II shows the 
various values of r] for which each of k = mn, m = 1, . . . . 50, 
would satisfy (197). 

We repeated the previous type of numerical experiment 
with the initial condition (194), using E = 0.01, E = 0.1, and 
even higher values of E, and choosing various values for q 
from Table II. However, even when we took m equal to the 
value for which (197) is satisfied in each case, our graphs 
always showed a two-mode solution similar to that in 
Figs. 1 and 5. Any spurious nonlinear effects were just too 
small to show up on our graphs. 

This is not entirely unexpected, since violation of condi- 
tion (148) should have an effect on the 0(s3) terms in (86), 
instead of the O(s2) terms when (138) is violated. Even 
though these terms are magnified at and near the critical 
wave number, such magnification never becomes big 
enough to be noticed. Condition (148) does not, therefore, 
seem to be very important in practice. 

We next turn to condition (151). This condition is 
violated when P’, = q, or 

qcoskh+$(cos2kh-coskh) -r/=0. (199) 1 
For k not near to zero, this is equivalent to 

v+$(2coskh+1)=O(r2), 

1 - 9.963392 18 - 5.007626 
2 -9.857949 19 -4.657241 
3 - 9.694504 20 -4.307267 
4 - 9.485698 21 - 3.958300 
5 -9.242728 22 -3.610948 
6 - 8.974270 23 - 3.265837 
7 - 8.686666 24 -2.923612 
8 - 8.384472 25 -2.584943 
9 - 8.070973 26 - 2.250526 

10 - 7.748589 27 - 1.921081 
11 -7.419139 28 - 1.597355 
12 - 7.084041 29 -1.280115 
13 - 6.744425 30 -0.970155 
14 - 6.401232 31 -0.668282 
15 -6.055269 32 -0.375318 
16 - 5.707248 33 - 0.092097 
17 - 5.357828 34 -0.180546 

35 0.441773 
36 0.690761 
37 0.926692 
38 1.148775 
39 1.356242 
40 1.548361 
41 1.724440 
42 1.883831 
43 2.025942 
44 2.150234 
45 2.256232 
46 2.343528 
47 2.411782 
48 2.460728 
49 2.490172 
50 2.5OOOOO 

and once more we can obtain a very good approximation by 
neglecting the 0(r2) term. Thus (199) is satisfied 
approximately when the wave number k is given by 

coskh=-(1+$)/2 

Note that when q = 0, this corresponds to kh = 2~13, or 
m = N/3. 

Using the parameters given by (192), we generated 
Table III, which shows the various values of q for which 
eachofk=mrr,m=l,..., 50 would satisfy r] = V,. We then 
assigned to q the value 

r] = 1.356242, (202) 

which would cause q to be equal to V, form = 39. As before, 
we used the initial condition (194) with E = 0.01 and ran 
scheme (53) for 100,000 time steps in double precision, 
taking a discrete Fourier transform after every 2000 steps. 
The results for m = 38, 39, and 40 are shown in Figs. 6-8. 
For m = 38 and m = 40 no significant deviation from a two- 
mode solution is seen; i.e., the approximation (188) is very 
good here. However, when m = 39 a mode with wave num- 
ber 27~ is excited, and its amplitude shows a near periodic 
behavior in time, corresponding to a similar behavior in the 
amplitudes of both initial modes. In this case, therefore, a 
solution with a spurious low wave number mode is 
obtained. 

In another series of experiments we considered the case 
m = 50, corresponding to kh = n or the saw-toothed carrier 
wave, in which case the equation V, = q becomes r] = 2ylh2, 
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FIG. 6. Time evolution of Fourier modes of the solution of (53). 
Initial data is (194), parameter values given by (192), E =O.Ol, 
q = 1.356242, and m = 38. 

FIG. 7. Same as in Fig. 6, but with m = 39. 

FIG. 8. Same as in Fig. 6, but with m = 40. 

FIG. 10. Same as in Fig. 9, but with 1 = 2.5. 

as explained in the previous section. For the choice of 
parameters given by (192) this critical value of q is given by 
q = 2.5. We used the initial condition (194) once more, 
which is now of the form 

24; = O.Ol( - 1)’ cos(h7tj). (203) 

Referring to (195) we see that on our grid this would show 
up as a single mode solution when performing a discrete 
Fourier transform, since the mode with wave number 5171 
aliases onto the mode with wave number 4971. 

We ran the scheme (53) with this initial data, again for 
100,000 time steps as before, performing discrete Fourier 
transforms every 2000 steps and using various values of q. 
The results for v = 2.4, 2.5, and 2.6 are shown in Figs. 9, IO, 
and 11, respectively. Figures 9 and 11 show no significant 
extra modes being created. Approximation (188) is essen- 
tially valid here. However, when 9 = 2.5, we see in Fig. 10 
that a mode with wave number 2n and a significant 
amplitude is excited, thus indicating a solution which 
deviates from (188). 

The numerical results in this section therefore show that 
the multiple scales analysis described in this paper correctly 
indicate the carrier wave numbers for which the behavior of 
the solution of scheme (53) deviates sharply from a small 
modulated harmonic wave. It also shows that condi- 
tion (148) is much less important than conditions (138) and 
(151). 

FIG. 11. Same as in Fig. 9, but with q = 2.6. 

FIG. 9. Time evolution of Fourier modes of the solution of (53). Initial 
data is (194), parameter values given by (192), E = 0.01, m = 50, and 
9 = 2.4. 



70 S. W. SCHOOMBIE 

The multiple scales analysis for the continuous equa- 
tion (1) does not indicate such behavior, so that we have 
identified some cases where the numerical solution does not 
resemble the solution of (1). 

6. CONCLUSIONS 

The discrete multiple scales technique described in this 
paper is a powerful tool for the examination of the modula- 
tion properties of equations such as the KdV equation (1). 

In this paper we showed that this technique can identify 
modes of the carrier wave of the envelope of a small, 
modulated harmonic wave, for which the solution of the 
numerical solution deviates sharply from that of the KdV 
equation. 

We also obtained a discrete version of the nonlinear 
Schrodinger equation, which describes the modulation 
properties of solutions of (53) which can be expanded in the 
form (86). This is exactly analogous to the continuous case. 

Obviously these methods of analysis can be applied to 
other discretizations of the KdV equation, as well as to 
discretizations of other dispersive wave equations, such 
as the modified KdV (MKdV) equation. This type of 
analysis would also be useful when dealing with models 
which are discrete to start with. 
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